Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Chinese Journal of Pharmacology and Toxicology ; (6): 89-98, 2018.
Article in Chinese | WPRIM | ID: wpr-705246

ABSTRACT

OBJECTIVE To explore the inhibitory effects of epalrestat (EPS) on platelet-derived growth factor (PDGF)-induced rat pulmonary artery smooth muscle cells proliferation by inhibiting aldose reductase (AR) expression.METHODS Primary rat pulmonary arterial smooth muscle cells (PASMCs) were prepared from the pulmonary artery of male 10-week-old Sprague-Dawley rats using explant method.PDGF 30 mg·L-1was given to induce cell proliferation.After PASMCs grew to 70%-80% conflu?ence, AR small-interferring RNA(ARsiRNA) was transfected with Lipofectamine 3000 into PASMCs. After 24 h,the expression and activity of AR were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR),Western blotting and spectrophotometric method,respectively to investigate EPS on PASMCs proliferation and proliferating cell nuclear antigen (PCNA) and collagenⅠexpression induced by PDGF from in vitro. PASMCs (normal control, PDGF 30 mg·L-1, PDGF+EPS 1, 10 and 100 μmol·L-1,EPS 100 μmol·L-1)were treated according to groups.Cell proliferation was measured by BrdU marking and flow cytometry. The expressions of AR, PCNA and collagenⅠwere analyzed with RT-qPCR and Western blotting.RESULTS In cultured PASMCs,compared with normal control group, the application of exogenous PDGF-induced cell proliferation concomitantly up-regulated AR expres?sion and activity (P<0.01), and such effect was abolished by ARsiRNA. Compared with PDGF group, EPS attenuated PDGF-induced proliferation of PASMCs,expression of PCNA,and collagenⅠ(P<0.05, P<0.01),and the inhibitory effect of EPS was accompanied by inhibition of AR expression(P<0.05,P<0.01).CONCLUSION EPS inhibits PDGF-induced proliferation of PASMCs via inhibiting AR expression.

2.
Acta Pharmaceutica Sinica ; (12): 1196-2016.
Article in Chinese | WPRIM | ID: wpr-779296

ABSTRACT

The basal forebrain (BF) is known to participate in the control of motion, attention, learning and memory, and it also plays a key role in sleep-wake regulation. Although there is a strong heterogeneity among neurons in the BF, the main types are cholinergic, gamma-aminobutyric acid (GABAergic) and glutamatergic neurons. This review provided the research progress in the regulation of sleep-wakefulness behavior by the 3 neurons in the BF. The cholinergic neurons play roles in activation of cortex and promote phase transition between sleep and wakefulness. The cortical projecting GABAergic neurons, which accept the projections from the adjacent cholinergic and glutamatergic neurons, contribute to awakening and the maintenance of normal wakefulness. The GABAergic interneurons may promote sleepiness by inhibiting the wake-active neurons which excite the cortical neurons. The glutamatergic neurons regulate sleep and wakefulness by interacting with neighbor cholinergic and cortical projecting GABAergic neurons or through the direct projection to the cortex as well.

3.
Acta Pharmaceutica Sinica ; (12): 1353-1357, 2013.
Article in Chinese | WPRIM | ID: wpr-259470

ABSTRACT

This study was to investigate the effect of peoniflorin on the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream signal molecules in the hippocampus of Alzheimer's disease (AD) rats for exploring the mechanism of peoniflorin protecting hippocampal neurons. AD model rats were established by bilateral intrahippocampal injection of beta-amyloid(1-42) (Abeta(1-42)) and divided randomly into 3 groups: AD model group, peoniflorin low-dose (15 mg x kg(-1)) group and peoniflorin high-dose (30 mg x kg(-1)) group. The vehicle control rats were given bilateral intrahippocampal injection of solvent with the same volume. After peoniflorin or saline was administered (ip) once daily for 14 days, the hippocampuses of all animals were taken out for measuring the expressions of Nrf2, heme oxygenase-1 (HO-1) and gamma-glutamylcysteine synthethase (gamma-GCS) mRNA by reverse transcription PCR, determining the contents of glutathione (GSH), malondialdehyde (MDA) and carbonyl protein (CP) using colorimetric method, and for assaying the expressions of neuronal apoptosis inhibitory protein (NAIP) and Caspase-3 by immunohistochemical staining method. The results showed that peoniflorin markedly increased the expressions of Nrf2, HO-1 and gamma-GCS mRNA, enhanced the level of GSH and decreased the contents of MDA and CP in the hippocampus, as compared with the model group. Peoniflorin also improved the NAIP expression and reduced the Caspase-3 expression in the hippocampus neurons. In conclusion, peoniflorin protects against the Abeta(1-42)-mediated oxidative stress and hippocampal neuron injury in AD rats by activating the Nrf2/ARE pathway.


Subject(s)
Animals , Male , Rats , Alzheimer Disease , Metabolism , Amyloid beta-Peptides , Anti-Inflammatory Agents, Non-Steroidal , Pharmacology , Caspase 3 , Metabolism , Glucosides , Pharmacology , Glutamate-Cysteine Ligase , Genetics , Metabolism , Glutathione , Metabolism , Heme Oxygenase (Decyclizing) , Genetics , Metabolism , Hippocampus , Metabolism , Malondialdehyde , Metabolism , Monoterpenes , Pharmacology , NF-E2-Related Factor 2 , Genetics , Metabolism , Neuronal Apoptosis-Inhibitory Protein , Metabolism , Neurons , Metabolism , Oxidative Stress , Peptide Fragments , RNA, Messenger , Metabolism , Random Allocation , Rats, Sprague-Dawley
4.
Acta Pharmaceutica Sinica ; (12): 406-410, 2013.
Article in Chinese | WPRIM | ID: wpr-235651

ABSTRACT

The paper aims to explore the studying method for the pharmacokinetics of drugs in target organs, the pharmacokinetic process of tramadol hydrochloride in the extracellular fluid of frontal cortex (FrCx) of mice was investigated. Six male mice (Kunming strain) were anaesthetized (urethane, 1.8 g x kg(-1), ip) and secured on a stereotaxic frame. A microdialysis probe was implanted into the FrCx and perfused with artificial cerebrospinal fluid at a flow rate of 2 microL x min(-1). One hour later, mice were administrated (ip) with tramadol hydrochloride (50 mg x kg(-1)) and dialysates were collected continuously at 12-min intervals (24 microL each) for 6 h. The tramadol concentration in dialysates was determined by HPLC-Ultraviolet detection method, and the concentration-time curve and pharmacokinetic parameters of tramadol were calculated with DAS software. The results showed that the pharmacokinetic process of tramadol in the FrCx extracellular fluid of mice was fitted to a two-compartment open model, and the main pharmacokinetic parameters t1/2alpha, t1/2beta, t(max), C(max) and AUC(0-infinity) were (0.27 +/- 0.05) h, (2.72 +/- 0.24) h, (0.50 +/- 0.10) h, (2 110.37 +/- 291.22) microg x L(-1) and (4 474.51 +/- 441.79) microg x L(-1) x h, respectively. In conclusion, a studying method for pharmacokinetics of drugs in the target organ is established, which is simple and feasible. Tramadol hydrochloride shows a two-compartment model in the extracellular fluid of the mouse FrCx, and the distribution- and elimination half-life are 0.5 h and 2.7 h, respectively.


Subject(s)
Animals , Male , Mice , Area Under Curve , Chromatography, High Pressure Liquid , Extracellular Fluid , Metabolism , Frontal Lobe , Metabolism , Half-Life , Microdialysis , Tramadol , Pharmacokinetics , Ultraviolet Rays
5.
Acta Pharmaceutica Sinica ; (12): 101-104, 2012.
Article in Chinese | WPRIM | ID: wpr-323073

ABSTRACT

To guide the reasonable clinical application of modafinil (MOD), pharmacokinetics and pharmacodynamics of MOD in mice and the correlation between them were investigated. Male mice (Kunming strain) were given a single oral dose of MOD (120 mg x kg(-1)). The plasma concentration of MOD was measured by HPLC and the pharmacokinetic parameters were calculated with DAS 3.0 software. For another batch of male Kunming strain mice, their locomotor activities were recorded by an infrared ray passive sensor after a same oral dose of MOD, and the synchronization and correlation between the changes of MOD plasma concentration and the locomotor activity induced by MOD were compared and analyzed. The results showed that the plasma concentration-time curve of MOD was fitted to two-compartment open model with a first order absorption. The main pharmacokinetic parameters t1/2alpha, t1/2beta, t(max), C(max) and AUC(0-inifinity) were 0.42 h, 3.10 h, 1.00 h, 41.34 mg x L(-1) and 142.22 mg x L(-1) x h, respectively. MOD significantly increased locomotor activity and the effect lasted for about 4 h. The changes of MOD plasma concentration and the locomotor activity induced by MOD were synchronous. In conclusion, there is a significant correlation between the effect of MOD and its plasma concentration after administration of 120 mg x kg(-1) in mice.


Subject(s)
Animals , Male , Mice , Administration, Oral , Area Under Curve , Benzhydryl Compounds , Blood , Pharmacokinetics , Pharmacology , Central Nervous System Stimulants , Blood , Pharmacokinetics , Pharmacology , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Motor Activity
6.
China Journal of Chinese Materia Medica ; (24): 2603-2606, 2012.
Article in Chinese | WPRIM | ID: wpr-263878

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the protective effect of paeonol on amyloid beta1-42 (Abeta1-42)-induced neurotoxicity and its mechanism.</p><p><b>METHOD</b>Hippocampal neurons of well-grown newborn SD rats and differentiated SH-SY5Y cell lines were cultured with various concentrations of paeonol (1, 5, 10 micromol x L(-1), respectively) for 6 hours and then incubated with Abeta1-42 oligomer (30 micromol x L(-1)) for 24 hours and 48 hours, respectively. The neuron apoptosis was observed by Heochst33258. Annexin V/PI double stain flow cytometry assay was adopted for determining SH-SY5Y cell apoptosis rate. And the expression of BDNF and Bcl-2 mRNA was detected by RT-PCR.</p><p><b>RESULT</b>Compared with the model group, various concentrations of paeonol (1, 5, 10 micromol x L(-1)) significantly reduced the hippocampal neurons karyopycnosis, decreased the rate of SH-SY5Y cell apoptosis to 22.4%, 18.1% and 16.4%, respectively, and improved the expressions of BDNF and Bcl-2 mRNA.</p><p><b>CONCLUSION</b>Paeonol relieves Abeta1-42 oligomer-induced neuron injury by increasing BDNF and Bcl-2 expressions.</p>


Subject(s)
Animals , Humans , Rats , Acetophenones , Pharmacology , Alzheimer Disease , Drug Therapy , Genetics , Metabolism , Amyloid beta-Peptides , Toxicity , Apoptosis , Cell Line , Cells, Cultured , Hippocampus , Cell Biology , Neurons , Neuroprotective Agents , Pharmacology , Peptide Fragments , Toxicity , Proto-Oncogene Proteins c-bcl-2 , Genetics , Metabolism , Rats, Sprague-Dawley
7.
Acta Pharmaceutica Sinica ; (12): 247-252, 2011.
Article in Chinese | WPRIM | ID: wpr-348969

ABSTRACT

Histaminergic neurons solely originate from the tuberomammillary nucleus (TMN) in the posterior hypothalamus and send widespread projections to the whole brain. Experiments in rats show that histamine release in the central nervous system is positively correlated with wakefulness and the histamine released is 4 times higher during wake episodes than during sleep episodes. Endogeneous prostaglandin E2 and orexin activate histaminergic neurons in the TMN to release histamine and promote wakefulness. Conversely, prostaglandin D2 and adenosine inhibit histamine release by increasing GABA release in the TMN to induce sleep. This paper reviews the effects and mechanisms of action of the histaminergic system on sleep-wake regulation, and briefly discusses the possibility of developing novel sedative-hypnotics and wakefulness-promoting drugs related to the histaminergic system.


Subject(s)
Animals , Adenosine , Physiology , Dinoprostone , Physiology , Histamine , Metabolism , Physiology , Hypothalamic Area, Lateral , Physiology , Intracellular Signaling Peptides and Proteins , Physiology , Neurons , Physiology , Neuropeptides , Physiology , Orexins , Prostaglandin D2 , Physiology , Sleep , Physiology , Wakefulness , Physiology , gamma-Aminobutyric Acid , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL